본문 바로가기
지속가능티끌/Data.Math.Phys

SNNS. Stuttgart Neural Network Simulator

by 리치굿맨 2017. 6. 26.

SNNS. Stuttgart Neural Network Simulator




주요특징.

유닉스기반.

Backpropagation (BP) for feedforward networks

  • vanilla (online) BP
  • BP with momentum term and flat spot elimination
  • batch BP
  • Counterpropagation
  • Quickprop
  • Backpercolation 1
  • RProp
  • Generalized radial basis functions (RBF)
  • ART1
  • ART2
  • ARTMAP
  • Cascade Correlation
  • Recurrent Cascade Correlation
  • Dynamic LVQ
  • Backpropagation through time (for recurrent networks)
  • Quickprop through time (for recurrent networks)
  • Self-organizing maps (Kohonen maps)
  • TDNN (time-delay networks) with Backpropagation
  • Jordan networks
  • Elman networks and extended hierarchical Elman networks
  • Associative Memory

  • 사이트 : http://www.ra.cs.uni-tuebingen.de/SNNS/


    SNNS 의 R 패키지 : http://igotit.tistory.com/1333





    ///1334.



    태그

    댓글0


    .    
    현물 |선물 인버스 |선물 USDT     현물 | 선물 USDT |봇제작툴/카피트레이딩     현물 |선물 인버스 |선물 USDT     .